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Abstract 

Integrity and trust in that integrity are fundamental to academic research. However, procedures for monitoring the 
trustworthiness of research, and for investigating cases where concern about possible data fraud have been raised are 
not well established. Here we suggest a practical approach for the investigation of work suspected of fraudulent data 
manipulation using Benford’s Law. This should be of value to both individual peer-reviewers and academic institutions 
and journals. In this, we draw inspiration from well-established practices of financial auditing. We provide synthesis 
of the literature on tests of adherence to Benford’s Law, culminating in advice of a single initial test for digits in each 
position of numerical strings within a dataset. We also recommend further tests which may prove useful in the event 
that specific hypotheses regarding the nature of data manipulation can be justified. Importantly, our advice differs 
from the most common current implementations of tests of Benford’s Law. Furthermore, we apply the approach to 
previously-published data, highlighting the efficacy of these tests in detecting known irregularities. Finally, we discuss 
the results of these tests, with reference to their strengths and limitations.
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Background
Accounts of scientific misconduct can draw widespread 
attention. Archetypal cases include the study produced 
by Wakefield et  al. [1] linking autism to the vaccine 
against measles, mumps and rubella, and the decade-
long misconduct perpetrated by Diederik Stapel [2, 3]. 
The problem, however, is far more widespread than often 
recognised. A meta-analysis of survey data reports that 
almost 2% of scientists admitted to having fabricated, fal-
sified or modified data on at least one occasion [4]. This 
is perhaps unsurprising in the context of well-established 
biases towards the publication of significant results [5–
8]; one study suggesting that the likelihood of publish-
ing clinical trial results with statistically significant or 

positive findings is nearly three times higher than those 
with non-significant, negative, or perceived-unimportant 
results [9]. One needs only to look through a list of recent 
retractions to understand the extent of the issue [10]. The 
potential consequences of such misconduct are dire, not 
only in their potential to directly affect human lives, as in 
the case of unvaccinated children [11], but also in their 
capacity for reputational damage, to scientists, institu-
tions, fields of research, and the scientific process itself, 
at a time when societal confidence in published scientific 
literature has been shaken; with public figures describing 
scientific data on phenomena such as climate change as 
“fake news” [12].

The verification of data veracity is a key area of fail-
ure in this regard. Currently, consensus regarding effi-
cient methods is lacking. Even in areas of science such as 
medicine, where the quality of data can be directly linked 
to human outcomes and monetary gain or loss, guide-
lines are inconsistent and non-specific in the audit and 
verification of source data [13]. In many areas of science, 
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peer-review remains the most heavily relied upon means 
of quality-control in scientific research by journals, whilst 
academic institutions seem not to focus on prevention 
or detection, but on investigation only after a whistle has 
been blown [3]. Although peer-reviewers have undoubt-
edly become more familiar with the susceptibility of 
research to misconduct, there has existed little frame-
work to assist in its investigation. Recently, a checklist 
was proposed which might be used to flag studies which 
are more vulnerable to manipulation for further investi-
gation [14]. However, it was identified that after screen-
ing, there is no clear process which reviewers might be 
directed to in further investigating research data which 
they suspect may be fraudulent [14]. We propose that 
Benford’s Law might provide a useful next step in the 
investigative process [15]. Analysing the distribution fre-
quency of financial data with reference to Benford’s Law 
is a well-established fraud analysis technique in the prac-
tice of professional auditing [16], and its effectiveness 
has been shown in detecting fabricated data for exam-
ple in the fields of anaesthesia, sociology and accounting 
research ([17–21]; see also [22] where it was not effec-
tive for a group of social psychology studies, although we 
explain later why detection can depend on careful choice 
of test statistic).

In the present paper we aim to provide a concise set 
of advice on the implementation of tests of Benford’s 
Law compliance as a primer for those wishing to further 
investigate data highlighted as problematic, of value to 
investigations involving routine monitoring as part of the 
peer-review process, or those targeted at specific work 
where concern has been raised. This builds on the semi-
nal works of, for example Diekmann [21], by synthesising 
the available literature and providing useful conclusions 
based on the weight of evidence presented. We discuss 
the qualities a sample of data might have that make it 
more or less likely to conform to Benford’s Law, and offer 
guidance on ways to test for adherence to Benford’s Law 
statistically. We then take an example from animal per-
sonality data to explore the test’s effectiveness with real 
data in a field to which it has not been previously applied 
and explore how statistical testing can be augmented 
by the use of comparator data-sets that are not under 
suspicion. Ultimately, we thus aim to contribute to the 
conception of an overall framework which investigators 
might refer to in the inspection of potentially fraudulent 
research.

Identifying abnormal patterns in data
Benford’s Law is a well-established observation that, 
in many numerical datasets, a distribution of first and 
higher order digits of numerical strings has a character-
istic pattern. The observation is named after the physicist 

Frank Benford [15] who reported it in a paper regarding 
“The Law of Anomalous Numbers”, although it was actu-
ally first stated by Simon Newcomb [23] and is some-
times referred to as the Newcomb-Benford Law. In its 
light version, it states that the first digit, d, of numerical 
strings in datasets that follow this distribution is more 
likely to be 1 than any other value, with decreasing prob-
ability, P(d), of the digit occurrence as it increases in 
value (see Eq. 1 below and Fig. 1). This phenomenon can 
be observed across a wide array of datasets, including 
natural data such as global infectious disease cases and 
earthquake depths [24], financial data [25], genome data 
[26], and mathematical and physical constants [15].

where i = 1 and 1 ≤ d ≤ 9
Furthermore, the law can be generalised to digits 

beyond the first, such that we can predict the probabil-
ity of occurrence, P(d), of any digit, d, in any position, i, 
within a given string using the conditional probabilities 
of the preceding digits ([27]; see Table  1 and Eq.  1 (for 
i = 1) & 2 (for i > 1)). This can be especially important in 
assessing adherence to a Benford’s Law distribution, as 
data fabricators will often neglect to conform digits sub-
sequent to the first to any kind of natural distribution 
[21].

Where i > 1
Deviations from Benford’s Law then, in datasets where 

we expect to see adherence to this digit distribution, can 
raise suspicion regarding data quality. Indeed, financial 
auditors have been using Benford’s Law for some years 
to test datasets’ adherence to the expected distribution in 
order to detect possible fraudulent manipulation [16]. It 
has also been applied recently in the analysis of COVID-
19 data and the potential spuriousness of some countries’ 
self-reported disease cases [28, 29]. Accordingly, it has 
been suggested that Benford’s Law provides a suitable 
framework against which scientific research data can be 
inspected for possible indications of manipulation [21, 
30].

In order to do so, we must first define datasets which 
are appropriate for this use and for which we would 
expect to see adherence to BL. In general, it is expected 
that datasets where individual values span multiple 
orders of magnitude are more likely to abide by BL. There 
is no set minimum number of datapoints, although a 

(1)P(d|i ) = log10 1+
1

d
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good rule of thumb can be derived from a power analy-
sis by Hassler and Hosseinkouchack [31], that generally 
the statistical tests for deviations from Benford’s Law will 
be most effective with at least N ≥ 200. However, even for 
sample sizes as small as 20, some testing may be worth-
while (see [32] for approaches in this case).

This assumption being satisfied, we should more spe-
cifically expect data with a positively skewed distribution, 
as is common in naturally occurring data (such as river 
lengths or fishery catch counts), to adhere to BL. This 

includes such distributions as the exponential, log-logis-
tic, and gamma distributions [33]. Furthermore, we can 
expect figures derived from combinations or functions of 
numbers such as financial debtors balances, where price 
is multiplied by a quantity [34], or the regression coef-
ficients of papers within a journal [21], to conform with 
Benford’s Law. Note that this should be true irrespective 
of the unit of measurement, i.e. the distribution of digits 
should be scale invariant [27].

There are also some cases where we might expect digits 
following the first, but not the first digit of some data to 
follow Benford’s Law. For example, stock market indexes 
such as the FTSE 100 over time, for which the magni-
tudes of the first digits are constrained (having never 
exceeded 8000 at the time of writing) but for which the 
subsequent digits do follow the expected Benford’s Law 
distribution reasonably closely.

Equally, there are many datasets for which a Benford’s 
Law digit distribution may not be appropriate. This is 
true of data that is normally or uniformly distributed. The 
Benford’s Law digit distribution should also be expected 
not to be met by data that is human-derived to the extent 
that no natural variation would be expected, such as 
prices of consumer goods, or artificially selected depend-
ent variables such as the volume of a drug assigned to dif-
ferent treatment groups [33, 34]. Ultimately, the reviewer 
must apply professional judgement and scepticism in 
choosing appropriate datasets for analysis by reference 

Fig. 1  Benford’s Law for the first digit. Graphical depiction of Benford’s Law as applied to the first digits of a notional dataset that perfectly fits the 
law, displaying the characteristic negative logarithmic curve of occurrence probability, P(d), as the digit value increases

Table 1  Probability of digit d in position i of a numerical string 
per Benford’s Law for the first 4 digits

Digit, d Position, i = 1 i = 2 i = 3 i = 4

0 0.11968 0.10178 0.10018

1 0.30103 0.11389 0.10138 0.10014

2 0.17609 0.10882 0.10097 0.10010

3 0.12494 0.10433 0.10057 0.10006

4 0.09691 0.10031 0.10018 0.10002

5 0.07918 0.09668 0.09979 0.09998

6 0.06695 0.09337 0.09940 0.09994

7 0.05799 0.09035 0.09902 0.09990

8 0.05115 0.08757 0.09864 0.09986

9 0.04576 0.08500 0.09827 0.09982

E(d) 3.43973 4.18712 4.46773 4.49677

σ2
d 6.05554 8.25399 8.25120 8.25112
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to a Benford distribution. Implicit in this is the require-
ment that investigators determine and justify whether 
data should be expected to conform to Benford’s Law 
prior to any testing of that conformity. Table 2 provides 
a non-exhaustive summary of properties of appropriate 
and inappropriate data for Benford analysis.

Once an appropriate dataset has been selected, we may 
assess conformance to Benford’s Law in a number of 
ways. There are several options to choose from in testing 
adherence to Benford’s Law statistically. Goodness-of-
fit tests, including for example Cramér–von Mises, Kol-
mogorov-Smirnov, or Pearson’s 𝜒2-test, might seem most 
appropriate, and indeed seem to be the most often used 
tests in the Benford’s Law literature [31]. Determining the 
best test is not as simple as it may appear however, with 
consideration of sensitivity to different types of deviation 
from the law, avoidance of mistakenly suggesting devia-
tion where none exists, interpretability and parsimony.

Hassler and Hosseinkouchack [31] conducted power 
analysis by Monte-Carlo simulation of several statistical 
tests of adherence to Benford’s Law using various sam-
ple sizes up to N = 1000, including Kuiper’s variant of 
the Kolmogorov-Smirnov test, Cramér–von Mises, Pear-
son’s 𝜒2-test with 8 degrees of freedom (9 for i > 1), (Eq. 3 
below), and a variance ratio test developed by the authors 
[35]. They found all of these tests to be underpowered 
at detecting the types of departure investigated in com-
parison to the simple 𝜒2-test with one degree of freedom 
suggested by [36], (Eq.  4), which compares the mean of 
the observed frequency of d to that of the expected fre-
quency. They recommend further, that for Benford’s 
Law for the first digit, greater power can be achieved by 
a one-sided mean test ‘Ζ’, (Eq. 5), if one can justify the a 
priori assumption that the alternative hypothesis is unidi-
rectional. This may be assumed if we believe a naïve data 
fabricator might tend to fabricate data with first digit 
probabilities closer to a uniform distribution, biasing the 
probability of higher-order digits in the first position, 
thus increasing the mean, d , of the observed first digits in 

comparison to the expected mean, E(d) (see a summary 
of E(d) in Table 1); although see Diekmann [21] who sug-
gests that fabricators may intuitively form a reasonable 
distribution of first but not second digits. Accordingly, 
the null hypothesis in Ζ is rejected where d > E(d).

What we refer to as the 𝜒2-test with 8 or 9 degrees of 
freedom, the 𝜒2-test with one degree of freedom and 
the Z test, respectively, have calculated values as defined 
below:

Where:
N is the number of observed digits
d is an index for each possible digit
hd is the observed frequency of digit d (such that the 

sum of these frequencies adds up to 1)
pd is the expected frequency of digit d (see Table 1)
d is the mean of the N observed digits 

( d = N−1
∑N

j=1 dj ) and dj is the observed digit value at 
the relevant position corresponding to datapoint j of the 
dataset of N observed digits, where 1 ≤ j ≤ N.
E(d) is the expected digit mean (see Table 1)
σd is the standard deviation of expected digits (see 

Table 1)

Further simulations can be seen in Wong [37], using 
greater sample sizes, suggesting, in the absence of the 
variance ratio and 𝜒2-test with one degree of freedom 
tested in Hassler and Hosseinkouchack [31], that Cramer 

(3)X2
8 or 9 = N

9
∑

d=1 or 0

(hd − pd)
2

pd

(4)
X
2

1
= N
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d − E(d)

)2

σ 2
d

(5)Z =
√
Nd−E(d)

σd

H1 : d > E(d)

Table 2  Appropriate data for Benford analysis

Likely Appropriate Data Examples
Datasets spanning several orders of magnitude World country populations across time

Data derived from natural phenomena Mathematical and physical constants

Data with a positively skewed distribution, where the mean is greater than the median Much ecological data such as river lengths

Sets of numbers derived from combinations or functions of numbers Regression coefficients of papers within a journal

Likely Inappropriate Data Examples
Sets of assigned numbers or those driven more by human than natural processes Sample or participant identification numbers, house prices

Data that does not span several orders of magnitude (although we may apply the law to subse-
quent digits to the first)

Human heights, some stock market indexes

Data with an expected specific non-positively skewed distribution Binomial survival probability of polar bears across seasons
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von-Mises or Anderson-Darling tests can provide the 
greatest power to detect some types of deviation. More 
importantly however, Wong [37], having simulated with 
greater sample sizes, suggests that with increasing sample 
sizes (N > ~ 3000), the rejection rate of the null hypoth-
esis, in any such test, increases significantly, even for 
distributions that deviate only very slightly from the null 
distribution.

With consideration to statistical power, complexity, 
interpretability, and parsimony, we therefore recommend 
that Pearson’s 𝜒2-test with one degree of freedom, Eq. 4, 
provides an effective overall test statistic for the adher-
ence to Benford’s Law of an appropriate dataset. Fur-
thermore, when testing for adherence to Benford’s Law 
for the first digit only, we echo the sentiments of Hassler 
and Hosseinkouchack [31], that it may be appropriate to 
increase the power of the test by assuming a unidirec-
tional alternative hypothesis and applying a one-tailed 
variant of the test. Of course, investigators may often 
want to utilise multiple tests. Indeed, there is reason in 
some cases to argue that the tests of digit means in Eqs. 4 
& 5 are less informative than the chi-squared test in 
Eq.  3. These tests are useful as a first port of call when 
testing general hypotheses regarding the distribution of 
fabricated digits, however they are on odd occasions less 
sensitive than Eq. 3 to substantial variations in individual 
digits. For example, if we believe that a fabricator might 
produce an overabundance of fives and zeros in the sec-
ond position of numerical strings than is expected natu-
rally, Eqs. 4 & 5 may not detect this if the mean value of 
digits in this position are compensated  by the distribu-
tion of the other digits. In such a situation it is of value to 
adopt a further statistic, and the chi-square test in Eq. 3 is 
generally a useful option.

It is important to note that statistically significant devi-
ations from Benford’s Law need not be caused by fraudu-
lent manipulation, as typified by the suggestion of Wong 
[37], that greater and greater sample sizes will increase 
the likelihood very small deviations from the null distri-
bution being detected. Also testing multiple digit posi-
tions within the same data-set will increase the chance 
of type I error. This should be acknowledged, or con-
trolled for using a procedure like Bonferroni correction, 
or a compound test across multiple digits used (see [32] 
for useful approaches in this regard). Data irregularities 
may also arise as a result of error rather than manipula-
tion. Even with the most parsimonious test, caution and 
forethought must be applied in the use of such tests with 
certain datasets. We recommend plotting the expected 
and observed distributions of digits as an intuitive means 
of estimating the strength of any deviation from the 
expected distribution. A reusable code snippet has been 
provided in the additional file (part 1. Reusable Benford’s 

Law tests and graphs) which may be used to extract digits 
from numerical strings in a dataset, plot the associated 
distributions, and apply the tests under Eqs. 3 to 5. Inves-
tigators may also prefer to use the benford.analysis pack-
age for plotting [38].

Whilst it is provable mathematically that a scale-neu-
tral, random sample of numbers selected from a set of 
random probability distributions will follow Benford’s 
Law [27], Benford’s Law is not immutable or irrefuta-
ble for real data. Whilst we can observe that Benford’s 
Law holds remarkably well for certain datasets, reflect-
ing Hill’s theoretical proof and the idea that such data is 
ultimately the product of random processes and random 
sampling, in reality we know that no such dataset is truly 
completely random in its construction or sampling. As 
such, we can expect minor deviations from Benford’s Law 
even in datasets which fit all of the supposed criteria for 
suitable data. Thus, it is not possible to prove unquestion-
ingly that some set of data should, or should not, follow 
an exact distribution such as Benford’s Law. Justification 
for expecting a given data set to conform to Benford’s 
Law can come from discussion of the criteria already 
mentioned, but also from demonstrated conformity to 
Benford’s Law of similar independently-obtained data-
sets of similar data. Thus, we suggest that investigations 
of a suspect dataset through exploration of adherence to 
Benford’s Law will be greatly strengthened if appropriate 
“control” datasets are subject to the same testing. This 
we put to the test in  the following section, "Application 
to real data". Clearly, ideally the person carrying out such 
testing should be blind to which datasets are controls and 
which are the focal suspect ones.

Application to real data
In order to sufficiently demonstrate the efficacy of the 
described approach, we have applied the test of con-
formity to Benford’s Law to a number of existing publicly 
available datasets. First, we applied the test to datasets 
from publications which were retracted for suspected 
irregularities in the data. We then compared this to simi-
lar datasets with no such retractions or public suspicions 
of data abnormalities, to assess whether and when the 
test does or does not detect known irregularities.

Methods
First, we sought to identify published articles with data 
which is likely to contain irregularities. We used Retrac-
tion Watch Database [10] to search for retracted research 
articles tagged with expressions of concern about the 
underlying data. We limited this search to articles pub-
lished by ‘Royal Society Publishing’, which has imple-
mented a strong open data policy since 2013 [39, 40]. It 
is perhaps unsurprising that it is otherwise exceedingly 
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difficult to find publicly available data from publications 
which have been retracted for data issues. The exact 
search criteria used can be found in the additional file 
(part 2. Searches and methods). We manually scanned 
each of the 23 items identified by this search (some of 
which were duplicates of the same article with differ-
ent levels of notice), identifying two articles which met 
all of the criteria for testing, including publicly available 
and practically useable data, suitability for Benford’s Law 
analysis, and retraction for issues in the underlying data 

(henceforth, articles 1 & 2, see Table 3). The conclusions 
of both studies generally rely on data concerning individ-
ual differences within consistent aspects of animal behav-
iour, or ‘personality’ as it is often referred to [46]. This is 
a natural phenomenon which is well-researched within 
behavioural ecology and generally understood to be the 
result of natural processes of genetic expression and envi-
ronment. Data resulting from many methods of person-
ality measurement, such as the time for a fish to emerge 
from a refuge after being placed in a novel site (e.g. [45, 

Table 3  Results of the main tests of adherence to Benford’s Law for five datasets of animal personality data (Figs. 2 and 3)

*p < 0.05

**p < 0.01

***p < 0.001

Article Position, i N χ
2
1

Ζ χ
2
8 or 9

Reference Figure

1 1 1063 12.53*** −1.44 251.08*** [41] 2 (top)

1 2 1063 9.64*** 83.12*** [41] 2 (top)

2 1 1436 27.50*** −2.13 297.06*** [42] 2 (bottom)

2 2 1436 25.15*** 60.89*** [42] 2 (bottom)

3 1 164 0.47 0.28 18.90* [43] 3 (top)

3 2 164 0.24 9.45 [43] 3 (top)

4 1 316 0.93 −0.39 8.41 [44] 3 (middle)

4 2 316 0.10 11.29 [44] 3 (middle)

5 1 106 0.18 − 0.17 9.05 [45] 3 (bottom)

5 2 106 2.91 16.07 [45] 3 (bottom)

Fig. 2  Benford’s Law tests for articles 1 & 2. Distribution of digit value frequencies for the 1st (left panels) and second (right panels) digit positions 
of data from datasets of animal personality measures, taken from research articles retracted for suspicions of data fabrication, with 95% Sison & Glaz 
confidence intervals represented by the dashed lines. Dots represent the Benford expected frequency of digits, whilst the solid line represents the 
observed frequency. Top 2: Article 1. Bottom 2: Article 2
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47]), are found to have distributions across populations 
which mimic that of other natural processes, being posi-
tively skewed [48] and thus conforming to the criteria 
outlined in "Identifying abnormal patterns in data" (see 
Table 2).

Next, we sought to identify research articles with data 
on the same type of phenomena, which were as similar as 
possible to articles 1 & 2, but differentiated by having no 
notices of retraction or public suspicions of irregularities 
within the data. To achieve this, we identified the general 
topic of the two retracted articles and created a search 
directly within the Royal Society Publishing website’s 
journal search tool. This centred around research articles 
with titles containing the words ‘personality’, ‘boldness’ 
or ‘bold’, published from 2014 onwards (as in the previ-
ous search). The search criteria and results can be found 
in the additional file (part 2. Searches and methods). The 
first 30 publication results were manually scanned for 

appropriate data. Eight publications were deemed to be 
appropriate based on methodological similarities with 
articles 1 & 2, conformance with the criteria in "Identi-
fying abnormal patterns in data", and the availability and 
useability of the underlying data.

For methodological convenience, such studies of per-
sonality often constrain the maximum values of time 
to emerge/ resume activity, assigning a maximum value 
where the animal is found not to have emerged/ resumed 
activity after a specified length of time. In this way, the 
associated data contain several experimenter-assigned 
numbers, which artificially skew the data and inflate the 
number of zeros in the digits subsequent to the first of 
numerical strings within the data. In general Benfords 
Law is not expected to apply (at least to the first digit) 
when data contains an imposed maximum and/or mini-
mum value. As such, we only analyse a subset of the 
data for these sets, being all data with values less than 

Fig. 3  Benford’s Law tests for articles 3 to 5. Distribution of digit value frequencies for the 1st (left panels) and second (right panels) digit positions 
of data from datasets of animal personality measures, taken from research articles not retracted for suspicions of data fabrication, with 95% Sison & 
Glaz confidence intervals represented by the dashed lines. Dots represent the Benford expected frequency of digits, whilst the solid line represents 
the observed frequency. Top 2: Article 3. Middle 2: Article 4. Bottom 2: Article 5
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the artificial maximum value assigned by the authors. 
Accordingly, we sought to test datasets with the high-
est levels of useable data for Benford analysis. Data was 
therefore required to be as numerous as possible to max-
imise the power of analysis, whilst maximising the avail-
able orders of magnitude, being those datasets with the 
greatest artificially-assigned maximum. In the absence 
of a strong argument to favour either criterion, we 
chose to rank each of the eight studies according to the 
two criteria with equal weighting. In this way, we could 
empirically determine the three studies with the highest 
combined rank for testing (articles 3 to 5, see Table 3 and 
the additional file; part 2. Searches and methods). For 
consistency, only time data on personality was assayed 
across all five datasets.

For each of the datasets identified in accordance with 
the criteria above then, we used R version 4.0.4 to extract 
the digits from the numerical strings of each datapoint to 
ascertain the distribution frequency of digits in the first 
and second positions. Using those distribution frequen-
cies, we were able to visualise conformity with Benford’s 
Law and estimate the goodness-of-fit using chi-squared 
and Ζ tests in accordance with Eqs. 3–5 outlined in "Iden-
tifying abnormal patterns in data". Simultaneous confi-
dence intervals were estimated and graphed for each set 
of digits using the method of Sison and Glaz [49], which 
can account for multinomial proportions, employing the 
R package MultinomialCI [50]. The code employed in 
analysing these datasets is available in the OSF repository 
[51]. This would easily be modified for readers interested 
in conducting similar analyses. In this regard there is also 
a useful R package benford.analysis [38].

Results
Under χ2

1 , articles 1 & 2 deviated significantly from 
Benford’s Law for digits in the first and second posi-
tions, whilst they did not deviate significantly for arti-
cles 3 to 5 (summarised in Table  3). Under Ζ, none 
of the articles deviated significantly for first position 
digits. This is due to d < E(d) in both instances, thus 
rejecting the null hypothesis. Finally, under χ2

8 or 9 , arti-
cles 1, 2 & 3 deviated significantly from Benford’s Law 
for digits in the first position. However, for digits in the 
second position, only articles 1 & 2 deviated signifi-
cantly from Benford’s Law.

As can be seen in Table 3, for both 1st and 2nd digits, 
χ
2
1 raised concerns about the data in the two articles that 

had already been identified as problematic, but never for 
the three comparator datasets. Conversely, Ζ raised no 
concerns about any of the articles, and χ2

8 raised concerns 
about the two “problematic” articles, but also suggested a 
possible “false positive” concern about article 3.

Discussion
Generally, the present results build on the growing evi-
dence base indicating that Benford’s Law is an effective 
means of screening data for potential fabrication (e.g. 
[21, 30, 52]). Furthermore, the results of this study high-
light the importance of understanding the data that one 
is investigating, as well as the limitations and advan-
tages of different tests of adherence to Benford’s Law. For 
example, although the chi-squared test with one degree 
of freedom (Eq. 4) performed well using the distribution 
of first digits to flag data which was known to contain 
issues, the variant of the chi-squared test under 8 or 9 
degrees of freedom (Eq. 3) did not, while the one-sided 
Z-test (Eq.  5) proved insensitive. We therefore reiterate 
our earlier statement that Eq. 4 is a useful tool for initial 
screening whilst Eqs.  3 & 5, together with exploratory 
visual analysis of graphs, can be useful in testing specific 
hypotheses regarding the nature of potential data fabrica-
tion. Indeed, visual analysis of the graph of observed first 
digits from article 3 reveal little concern despite the pos-
sible “false positive” indicated by Eq. 3.

Given that the data does not span more than 3 to 4 
orders of magnitude, one might argue that tests for digits 
in the first position inflate the likelihood of error com-
pared with digits in the second position. In the case of 
the Z-test and chi-squared test with 1 degree of freedom, 
this means that it is difficult to justify the assumption 
that the expected digit mean might resemble that of Ben-
ford’s Law. In this case, it is of comfort that we are able 
to apply the model to digits beyond the first, where the 
distributions of digits are less affected by orders of mag-
nitude. Indeed, the “false positive” identified here builds 
on the “false negative” findings by Diekmann [21], illus-
trating that Benford’s Law tests are often more effective 
at flagging data issues using the distribution of second 
and higher digits [21].

Consistent with the published notices of retraction 
to articles 1 & 2 [53, 54], the tests employed in the pre-
sent study flagged issues in the data which, upon closer 
inspection, contained inexplicable duplications. In the 
case of both articles, retractions were issued just less than 
6 years after the publication of the original articles. It is 
argued that the journals might have much more quickly 
detected this error using the tests employed in the pre-
sent study, and in so doing have protected their repu-
tations, and the integrity of scientific literature more 
generally. With this being said, it is commendable to have 
required the public availability of source data in the first 
place, without which such scrutiny and re-examination 
would not be possible. We argue that scientific integrity 
would be improved immeasurably by the standardisation 
of such requirements upon publication. Furthermore, we 
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argue that the use of statistical tests such as those out-
lined here provide a useful foundation on which to build 
a framework for the prevention and detection of scien-
tific misconduct through the manipulation of data, which 
might be used by individual peer-reviewers, academic 
journals, and scientific institutions alike. However, given 
the risk of any statistical test of false positives (and nega-
tives), statistical testing can only be a part (albeit a valu-
able one) of investigating potential fraud.

It is important to note, that fraudulent data manipu-
lation may manifest in ways that are less detectable by 
analyses of adherence to BL, or be present in data that is 
not appropriate for such analyses as they would not be 
expected to adhere to BL. It is of comfort therefore, that 
the statistical toolbox for investigators is vast, given the 
appropriate expertise. For example, an investigator might 
test the hypothesis that a researcher has fabricated clini-
cal trial data for two supposedly randomised trial groups 
by assessing the under- or over-dispersion of the sum-
mary statistics. Indeed Barnett [55] provides a compre-
hensive analysis of such a test’s effectiveness, concluding 
that it can be a useful flag of suspect clinical trials in tar-
geted checks. It might reasonably also be applied to the 
statistics of other between-groups experimental data. 
The consideration of a broad range of statistical tests will 
be of great import in the journey towards a framework 
for the detection and prevention of scientific misconduct. 
Recent work has demonstrated in the context of interna-
tional trade data, how we might identify features of data 
for which Benford’s Law should hold in the absence of 
fraudulent data manipulation, how application of the law 
can be modified where conformity cannot be expected, 
and how evidence of such fraudulent activity can be 
gathered in this context [56]. Exploration of the appli-
cability of these findings to other areas of potential data 
manipulation would further valuably expand our detec-
tion toolkit. Similarly, recent work [32] has suggested 
that testing procedures that use a combination of existing 
tests can be very effective at detecting departures from 
Benford’s Law even for datasets with as few as 20 data-
points. Further exploration of these approaches, perhaps 
in exploring their performance on datasets already con-
sidered a matter of concern, like the approach taken here, 
would be very valuable.

Conclusions
It is of consummate importance that confidence in sci-
ence is maintained. In providing a unified approach by 
which reviewers might investigate suspect data, and 
empirically validating its efficacy, it is hoped that we have 
suggested the potential to improve the assurance we gain 
over scientific data. It remains a significant issue that the 
controls over source data in scientific literature are clearly 

not sufficient. It is hoped however, that in describing a 
practical approach, academic institutions and publishers 
might consider some level of reform or improvement in 
the controls employed in preventing and detecting scien-
tific misconduct. Heightened rigour in the scrutiny of sci-
entific research is inevitable. Ultimately, the leaders and 
first-adopters in this field would be rewarded by mitigat-
ing their risk of association with fraudsters, and contrib-
uting to the ethical maintenance of truth in science.
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